Severe Asthma in the ED: What Would You Do?

J. Brady Scott, MSc, RRT-ACCS, FAARC
Director of Clinical Education and Assistant Professor
Department of Cardiopulmonary Sciences
Division of Respiratory Care
Rush University
How To Vote via Texting

How do you like my presentation so far?

Amazing: 458456
Incredibly Amazing: 458471
It's Alright: 458472

1. Standard texting rates only (worst case US $0.20)
2. We have no access to your phone number
3. Capitalization doesn’t matter, but spaces and spelling do

TIPS
I have no real or perceived conflict of interest that relates to this presentation. Any use of brand names is not in any way meant to be an endorsement of a specific product, but to merely illustrate a point of emphasis.
Objectives

• Define acute severe asthma (status asthmaticus)
• Discuss treatment options for acute severe asthma
• Review current literature support for known therapies used in acute severe asthma
• *Hope that our poll software works correctly!*
Acute Severe Asthma (status asthmaticus)

• **Defined:** *severe asthma unresponsive to repeated courses of beta-agonist therapy such as inhaled albuterol, levalbuterol, or subcutaneous epinephrine*¹

• **This is a medical emergency!**

• Accounts for 2 million ED visits, 500,000 hospitalizations, and > **4,000 deaths per year** in the U.S.²
• ~50% of acute severe asthma (SA) patients have a concomitant respiratory tract infection

• Other factors leading to SA:
 – Medical noncompliance
 – Nonsteroidal anti-inflammatory exposure in aspirin-allergic patients
 – Allergen exposures (especially pets)
 – Irritant inhalation (paint, smoke, etc)
 – Exercise
 – Insufficient use of inhaled or oral corticosteroids
 – Genetic polymorphisms can be associated with asthma severity
Autopsy reports of patients that died of asthma shows:

- Anatomic changes
 - Airway narrowing
 - Mucous plugging
 - Hyperinflation
 - Atelectasis
- Pulmonary infiltrates contained eosinophils, neutrophils, plasma cells, and lymphocytes
General Patient Assessment

• History
 – Past hospitalizations
 • ED visits
 • ICU admissions
 • Intubations
 – Frequency of albuterol use
 – Current medications
 • Illicit drug use
 – Exposure of allergens/irritants
 – Significant medical conditions
• **Physical Exam**
 – Main Focus
 • Severity
 – Accessory muscle use
 – Pulsus paradoxus
 – Refusal to recline below 30°
 – Heart rate > 120 beats/min
 • Causative/complicating conditions
 – Pneumonia
 – Pneumothorax
 – Pneumomediastinum
 – Atelectasis
• Physical Exam
 – Clinicians aren’t great at assessing the degree of actual airway obstruction
 – Peak flow or FEV1 may be useful for objectivity
 • Good luck!
 – Pulse oximetry
 – Arterial blood gas analysis
 • Useful if any questions of oxygenation/ventilation exist
Arterial Blood Gas Stages in SA

<table>
<thead>
<tr>
<th>Stage</th>
<th>pH</th>
<th>PaCO₂</th>
<th>PaO₂</th>
<th>Clinical Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Respiratory Alkalosis</td>
<td>↓</td>
<td>Normal</td>
<td>Asthma exacerbation</td>
</tr>
<tr>
<td>II</td>
<td>Respiratory Alkalosis</td>
<td>↓↓</td>
<td>↓</td>
<td>Common ED finding</td>
</tr>
<tr>
<td>III</td>
<td>Normal</td>
<td>Normal</td>
<td>↓↓</td>
<td>Impending failure</td>
</tr>
<tr>
<td>IV</td>
<td>Respiratory Acidosis</td>
<td>↑↑</td>
<td>↓↓↓</td>
<td>Impending respiratory arrest</td>
</tr>
</tbody>
</table>
Signs of a SEVERE attack

- **Adult**
 - Severe agitation
 - Hunched sitting position (tripod position)
 - Limited ability to speak
 - Use of accessory muscles
 - Tachypnea (RR > 30/min)

- **Infant**
 - Use of accessory muscles
 - Supraclavicular and intercostal retractions
 - Nasal flaring
 - Paradoxical breathing
 - Cyanosis
 - Tachypnea (RR > 60/min)
Signs of impending respiratory arrest²

- Lethargy or confusion
- Silent chest
- Paradoxical thoracoabdominal movement
- Bradycardia
Case

• 30 y/o female with significant history of asthma
 – Intubated last year for asthma at OSH
 – Admitted in ICU X 2 days
• Heart Rate: 122
• Respiratory rate: 32
• Breath sounds: Wheezing bilaterally
• Speaking in short sentences
• SpO_2 89% on RA in triage
• Diaphoretic
Inhaled Bronchodilators (adults)

- Albuterol 2.5 – 5.0 mg every 20 minutes as needed for 3 doses\(^2\)
- Levalbuterol 1.25 – 2.5 mg every 20 minutes as needed\(^2\)
- Ipratropium bromide (Atrovent\(^\text{®}\)) should be given with albuterol in severe exacerbations in the ED\(^3\)
- Albuterol vs. Levalbuterol\(^4\)
 - No real difference in side effects
 - Levalbuterol not superior to albuterol in safety and efficacy
• ~ 1 hour later
• Patient given nebulizers X 3 and I.V. corticosteroids
• Patient still seems extremely short of breath, vital signs same as previous
• Not worse, not better
Magnesium Sulfate

- Thought to cause relaxation of bronchial smooth muscle
 - Inhibits calcium influx into smooth muscle cells
- *May* have anti-inflammatory effects
- Benefit shown in severe exacerbations of asthma"
Results are conflicting:

Intravenous or nebulised magnesium sulphate versus standard therapy for severe acute asthma (3Mg trial): a double-blind, randomised controlled trial

Steve Goodacre, Judith Cohen, Mike Bradburn, Alasdair Gray, Jonathan Benger, Timothy Coats, on behalf of the 3Mg Research Team*

Interpretation Our findings suggest nebulised MgSO₄ has no role in the management of severe acute asthma in adults and at best suggest only a limited role for intravenous MgSO₄ in this setting.
Results are conflicting:

Intravenous magnesium sulfate for treating adults with acute asthma in the emergency department (Review)

Conclusion

This review showed that IV MgSO₄ reduces hospital admissions and improves lung function in adults with exacerbations of asthma when other first-line medications have not relieved the acute symptoms (i.e. oxygen, inhaled short-acting medications and IV steroids). Evidence for other measures of benefit and safety was limited.
Magnesium Sulfate

- Dosage: 2 g infused over 20 minutes
- Excellent safety profile
 - Contraindicated in presence of renal insufficiency
 - May cause muscle weakness
• 2 hours after arrival
• Continuous bronchodilators being given (20 mg/hr)
• Magnesium sulfate given (patient tolerates well)
• Vitals slightly improved
• Patient continues to have increased WOB
 – States, “I’m getting tired”
Transient increases in serum lactate with or without lactic acidosis during acute asthma is well-known.

Not totally understood

What is currently known:
- Increase in serum lactate is common
- Most often NOT accompanied by a metabolic acidosis
- β-adrenergic agonists seems to be the dominant cause of elevated serum lactate
- Does not appear to affect the effectiveness of bronchodilator therapy and has no known clinical consequence
Heliox

• Colorless, odorless, tasteless inert gas
• No direct pharmacologic or biologic effect
 – Does not have bronchodilatory or anti-inflammatory properties
• 70:30 or 80:20 mixtures most common
• Decreased gas density transitions turbulence to a laminar flow state, decreases airway resistance
Heliox

- Data is conflicting4,5
- Data supports using heliox in the care of patients with moderate-to-severe acute asthma as a nebulizer driving gas4
- Use is based on sound principles, can be safely administered, and may provide benefits for patients with severe impairment of lung function5
Noninvasive ventilation

• The role for NIV is not yet well defined6-8

• In a recent analysis of a national review, Nanchal et al9 noted:
 – Increased use of NIV/decrease use of invasive MV for life-threatening asthma

• 5 studies using NIV in asthmatics10-14 w/hypercapnia and increased WOB
 – Of 112 NIV patients, 19 (17\%) were intubated
Noninvasive ventilation

• Scala\(^{17}\) suggests NIV might be applied in asthma:
 – As an alternative to intubation in patients who have failed a trial of standard treatment
 – To prevent intubation in patients with mild-moderate ARF who do not need immediate ventilatory support
 – To prevent ARF in patients who do not have substantial impairment of gas exchange
 – To accelerate bronchodilation in patients who do not need mechanical ventilation
Noninvasive Ventilation in Severe Acute Asthma

Jhaymie L Cappiello MSc RRT-ACCS and Michael B Hocker MD MHS

Respiratory Care • October 2014 Vol 59 No 10
Noninvasive ventilation

• 35 y/o male
• Responsive, diaphoretic, RR 35/min on F_1O_2 1.0 oxygen, SpO_2 88%
• NIV 12/5 cm H_2O, F_1O_2 0.40
• Albuterol 40 mg/h
• ABG:
 – pH: 6.95
 – $PaCO_2$ 126 mm Hg
 – PaO_2 316 mm Hg
Noninvasive ventilation

• After 90 minutes
 – PaCO$_2$ 63 mm Hg

• NIV stopped after 4 hours
 – NIV tolerance was supported with low-dose lorazepam
 – Patient transferred to ICU
 – D/C’d home in 3 days

➢ Authors attribute success to close monitoring in critical care setting and titration of lorazepam
Case Finale

- After an hour on NIV, your patient is doing no better.
- Still alert, awake, and oriented
- However, the ED attending really, really wants to avoid intubation at all costs.
Conclusion

• Severe asthma can be life-threatening
• The goal is prevention of morbidity and mortality
 – Rapid assessment
 – Initiation of therapy
• Ongoing assessment is key
• Teamwork is key
Your patient!
References

Questions?

Thank you!

Jonathan_B_Scott@rush.edu